

- Thank you for joining today's webinar: OpenADR Implementation for Commercial and Industrial Facilities
- If you have a question please use the question box located on the right side of your screen.
- Questions for our speakers will be addressed at the end of the presentation.
- This webinar will be recorded for future playback.
- We will begin momentarily.

OpenADR Implementation for Commercial and Industrial Facilities

Webinar: September 30th, 2014

Mark Kerbel

EVP Business Development & Co-founder, REGEN Energy

Patty Solberg

Director of Product Marketing, Powerit Solutions

Agenda

- Demand Response Overview
- OpenADR Introduction
- Commercial and Industrial ADR Participation
 - Considerations for facility participation
 - Sample implementations
- Expanding C&I Load Participation
 - New program development
 - Technology and standardization

Demand Response Overview

Impact: Effective demand response can help reduce electric price volatility, mitigate generation market power, and enhance reliability.

FERC Definition¹: "Changes in electric usage by demand-side resources from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized."

NERC Demand Side Management Categories

OpenADR Vision

A non-proprietary, open standardized DR interface that allows electricity providers to communicate DR signals directly to customers using a common language and existing communications such as the Internet.

Source: LBNL

- **Standardize** the interface between electricity markets and customers
- Automate the customer resource to fluctuating energy prices and grid instability
- **Simplify** your energy future and maximize the value of your DR capacity

What is the OpenADR Alliance?

Vision: Facilitate the global deployment of OpenADR to reduce the cost of supplying and consuming electricity, while improving energy reliability and reducing environmental impact.

- California based nonprofit 501(c)(6) corporation
- Member based organization comprised of industry stakeholders interested in fostering OpenADR adoption
- Leverages Smart Grid related standards from OASIS, UCA and NAESB
- Supports development, testing, and deployment of commercial OpenADR

DR Considerations

Operational Impact Consideration	Industrial	Commercial	
Notification Timing	Is manual curtailment possible, or must it be automated	Many only use notification as an FYI, but do not want to act on it	
Event Duration	Can the curtailment be absorbed in the manufacturing process, or will it negatively impact throughput	Can curtailment be adjusted to meet comfort issues for long events	
Event Frequency	Will multiple events threaten business commitments	Will multiple events impact comfort	
Participation Levels	Is it possible to participate with ancillary and non-critical loads	What loads exist in the building that can be curtailed, and by how much	
Potential Earnings	Do payments make delaying product worthwhile	Do payments vs. impact on comfort make load shed worthwhile	

DR Event Elements

Factors in end-user participation

Chart source: Powerit Solutions

Barriers to ADR Adoption

Facilities managers don't understand impact and how to participate

Barrier* or Misperception?	Solution	
Reluctance on part of building owner or facility manager to hand over management and control	Education by OpenADR Alliance, use of flexible solutions to enable customer control	
Majority of existing commercial buildings have simple controls, manual control, or none at all	Strong community of OpenADR certified vendors offer cost effective solutions, other cost savings measures	
Cost of retrofitting a building for ADR can be significant		

*Source: Navigant Research report on Automated Demand Response OpenADR, Commercial & Industrial ADR, Residential ADR, and DR Management Systems: Global Market Analysis and Forecasts Published 1Q 2014

Benefits to Automation

- Improved reliability
 - Eliminate dependency on specific people
 - Reduce human error
- Enable participation in short response events
 - Some lucrative programs require 10 minute response or less
- Monitor and protect equipment
 - Closed loop controls and facility monitoring allow for a controlled participation in demand response
 - Ensure that equipment and critical temperatures or processes are being protected
- Enables granular participation
 - Choose which equipment participates in DR based on business requirements

Industrial Examples

Characteristic	Food and Beverage	Manufacturing	
Industrial Process	Table grape cooling, storing	Rubber products	
Location	Delano, CA	Orange, CA	
Controlled Loads	Precoolers, compressors, condensers, cold storage equip.	Mill, mixer, injector, and extruder motors, ovens	
Curtailment Strategy	Precool before events, reduce equipment during event while monitoring fruit and room temperatures	Interrupt operator load controls to turn down equipment	
Load Reduction, absolute and % of total	700kW / 80%	900kW / 72%	
DR Program(s)	SCE Demand Response Contracts (DRC)	SCE Demand Bidding Program, and Base Interruptible Program	
Notification Window	1 hour	DBP: Noon the day before BIP: 15 or 30 minutes	
Event Duration	1-6 hours	DBP: 2 hour minimum BIP: 6 hr max.	
Event Frequency		DBP: As bid and accepted BIP: 10 max/mo, 120 hrs max/yr	
Participation Method	AUTOMATED via OpenADR		
Reference info	<u>SCE Case Study</u>	SCE Case Study	

Commercial Examples

Characteristic	Small Commercial	Large Commercial
Building type	Multi-cinema Theater	Large Retail Mall
Location	Kapolei, Hawaii	Brea, California
Controlled Loads	Rooftop HVAC units	
Curtailment Strategy	Reduced duty cycles, smoothed out across all participating loads	
Load Reduction, absolute and % of total	60 kW / 50% of 25% of total building load	100 kW / ~10% of total building load
DR Program(s)	HECO Fast DR	SCE CBP Day Of Program + Load Aggregator
Notification Window	10 minutes	2 hours
Event Duration	15-60 minutes	1-4 hours
Event Frequency	Once per day	Once per day
Participation Method	AUTOMATED via OpenADR	

C&I DR Considerations

Classification of available load for DR participation

High 🔒			
Business Impact to Load Reduction	Base Load	Emergency lighting, product cooling	Business dependent
	Critical Load	Time-sensitive process equipment	HVAC, Lighting, defrost circuits, some food prep equipment
	Flexible Load	Time insensitive process equipment	HVAC, Lighting, defrost circuits, cold storage
	Ancillary Load	Forklift battery chargers, "normal" office temp. controls	HVAC, Lighting, defrost circuits, cold storage
	Low On-Site Generation	Participation depends on regulation	Rare due to relative costs
		Industrial Load Examples	Commercial Load Examples

Load Participation Opportunities

Automated DR increases the availability of C&I loads to participate in different styles of DR programs

Program impact on DR Participation

- Participation rules should match business capabilities and needs
 - Generator rules vs. load rules (response time, predictability, availability)
 - Business friendly rules = increased load participation
- OpenADR 2.0 enables DR programs of future
 - Migration to more responsive programs means loads must be automated
 - As traditional or capacity DR moves to economic and ancillary programs
 - Standardized communication protocol accelerates market adoption
 - Robust ecosystem of vendors
 - Common utility programs
 - OpenADR2.0b offers bidirectional metering capability

Automated Load Flexibility = Improved Load Value

- Transactive energy models increase the value of loads
- Business-friendly rules + loads that participate in grid balancing = optimized grid
- Facility managers can capitalize on participation in a hands-free manner

Source: <u>GWAC</u>

Upcoming OpenADR webinars

Implementing DR Programs Using an Open Standard

Oct. 28, 2014, 8am-9am PDT. Learn how the OpenADR standard can be used to create cost effective, secure and scalable DR programs for residential, commercial and industrial customers.

Electric Vehicles and Automated Demand Response

Nov. 18, 2014, 8am-9am PST. Learn how utilities are using the OpenADR standard to better manage EV programs, while capturing more revenue.

TO REGISTER VISIT: <u>www.openadr.org</u> click on upcoming webinars under events section on homepage

Stay in touch with OpenADR

Follow: @OpenADRAlliance

Connect: OpenADR Alliance Open Group

You

Like: OpenADR Alliance

Explore: OpenADR Alliance Channel

OpenADR Alliance Management Team

Rolf Bienert Technical Director rolf@openadr.org +1 925.336.0239 Barry Haaser Managing Director barry@openadr.org +1 408.310.9213

Shannon Mayette Marketing Director

<u>shannon@openadr.org</u> +1 602.882.4733 Rachel Dawn Davis Director of Member Services

rachel@openadr.org +1 201.707.6558

Thank you - Q&A

Mark Kerbel
EVP Business Development & Co-founder,

REGEN Energy

www.regenenergy.com

mark.kerbel @ REGENenergy.com

Patty Solberg Powertt Solutions

Director of Product Marketing,

Powerit Solutions

www.poweritsolutions.com pattys @ poweritsolutions.com

