
codibly.com

A Developer Perspective
Coping with a variety of standards -

OpenADR, OCPP, etc.

Łukasz Kulczyński
Executive Vice President | Head of eMobility

+48 538 050 158
lukasz.kulczynski@codibly.com
Linkedin

codibly.com

mailto:lukasz.kulczynski@codibly.com
https://www.linkedin.com/in/lukaszkulczynski/

codibly.com

Agenda
1. Codibly
2. Standards and their Role
3. Architecture design of different standards
4. Implementation models
5. Case Study - QUIZ
6. Which stack should I use?
7. Most common Questions from our Clients
8. Case Study EVSE x DEMAND RESPONSE

codibly.com

we integrate global energy industry
through software solutions

codibly.com

ABOUT SOLUTIONS HOW?

150+
Energy

Projects

20
Offices

Globally

1,600
Experts

From
Design to

Deployment

READY TO IMPLEMENT
INTEGRATIONS

TEAM AUGMENTATION

CUSTOM SOFTWARE
DEVELOPMENT

Open-Source
Components

● CHARGING MANAGEMENT SYSTEMS
● DEMAND RESPONSE
● eFLEET CHARGING
● DYNAMIC LOAD MANAGEMENT
● eMSP
● DRIVER APPS
● SMART CHARGING
● INTEGRATIONS (OCPP, OCPI, OICP, OSCP)
● V2X

● DEMAND RESPONSE/VPP INTEGRATIONS
● PROTOCOLS (OPENADR, IEEE 2030.5, ETC.)
● ENERGY MANAGEMENT SYSTEMS
● MICROGRIDS MANAGEMENT & CONTROLS
● ASSET MANAGEMENT PLATFORMS
● ENERGY TRADING

● VEHICLE INFOTAINMENT
● SAFETY and CYBERSECURITY
● AUTONOMOUS DRIVING
● HMI

13 Years
in the

Industry

codibly.com

Selected Case Studies
& Customers

Homeowner

Admin

All-in-one solution for efficient management of utility scale
storage systems for prosumers, installers and distributors.

The whole ecosystem enables energy costs and usage
optimization, battery and charger management, communication
with grid services, smart charging and storage of generated
energy based on utility tariffs to enable demand response.

The aim was to manage and monitor EV charging stations from
any manufacturer in one digital platform. This includes
overseeing operations, diagnosing and resolving remote issues,
and managing tariffs.

The outcome was a platform and mobile app that allowed for
remote setup and monitoring, full dynamic load balancing,
flexible scheduling, real-time data insights, and payment system

Platform to control remote charging stations and maintain a
specific load level set by the utility. Manages energy demand
response (DR) programs and efficiently adjusts loads across
multiple charging points. Supports various types of EVSEs and
provides a scalable, secure platform that can handle different
devices with customizations to meet system requirements.

Implemented OCPP 2.01, MODBUS, and ChargePoint API.

Client: Large North American Utility

Client: Leading German Vehicle Manufacturer

Client: Leading Japanese Electronics & Device Manufacturer

Grid and Device
Level Integrations

Dynamic Load
Management

Real-time Insights
for Customers

Vendor Agnostic Charge
Point Operator Platform

Multi-tenancy Interoperability &
Scalability

Spyrosoft roup www.spyro-soft.com

• We are experienced technology experts

• We use over 100 technologies and tools, always choosing
what’s best for the client

• We constantly improve our competencies

• We do not limit ourselves, and we are eager to explore new
technology areas

• We follow technological trends and apply best practices

codibly.com

We use wide range of
technologies

Standards and
their role

codibly.com

Standards and their role

codibly.com

i. Interoperability in the energy and EV sectors
1. Enable seamless communication between diverse hardware and software platforms.
2. Foster collaboration between different manufacturers, service providers, and grid operators.

ii. Ensure seamless communication between different devices, systems, and platforms.
1. Allow systems to expand with ease, supporting more devices, users, or services without requiring complete redesigns.
2. Facilitate large-scale deployments, such as smart grids and national EV charging networks.

iii. Reduce vendor lock-in and foster competition.

iv. Enable scalability in energy sector
1. Promote innovation by providing a common foundation for developers and stakeholders.
2. Enable startups and smaller companies to participate without needing proprietary infrastructure.

v. Cost Efficiency:
1. Reduce development and integration costs by avoiding proprietary solutions.
2. Streamline the deployment of new technologies by leveraging pre-defined frameworks.

vi. Faster Time-to-Market:
1. Standardized protocols simplify development and testing, accelerating product releases.
2. Reduce friction in regulatory approval processes by adhering to industry norms.

vii. Security:
1. Many standards include robust security protocols, protecting systems against data breaches and unauthorized access.

Lack of Interoperability

Proprietary Integrations

● Designed for a specific system or vendor, making it difficult to integrate with third-party devices, platforms, or systems.
● Often require custom connectors or middleware to communicate with other technologies, adding complexity.

Open Standards

● Standards like OpenADR and OCPP are built on interoperability principles, ensuring seamless communication between devices and systems from different manufacturers.
● Use universal protocols like HTTP, JSON, XML, WebSocket, and standardized message structures to ensure compatibility.

Example:

● An EV charger using OCPP can work with any back-end system supporting OCPP, while a proprietary integration locks you into a specific back-end solution.

2. Scalability Challenges

Proprietary Integrations

● Scaling requires duplicating proprietary customizations or building new ones for each new component, significantly increasing development time and costs.
● Dependence on vendor-specific features limits scalability across regions or markets with different requirements.

Open Standards

● Standards provide a plug-and-play architecture that supports adding new devices or systems without extensive rework.
● Scalability is inherently built into the design, allowing networks to grow seamlessly.

Example:

● Scaling a demand-response network with OpenADR is straightforward, as all participating devices adhere to the same standard.

3. Increased Development and Maintenance Costs

Proprietary Integrations

● Require building and maintaining custom APIs, protocols, and communication layers for every integration point.
● Updates or changes to the proprietary system necessitate corresponding updates in the integration, increasing costs over time.

Open Standards

● Reduce development time and costs by leveraging pre-built, widely adopted frameworks, libraries, and tools.
● Updates to standards are managed collaboratively by industry groups, reducing the burden on individual companies.

Example:

● OpenADR libraries provide reusable components, whereas proprietary demand-response solutions require a full-stack implementation.

4. Vendor Lock-In

Proprietary Integrations

● Tightly coupled to a specific vendor’s technology, making it difficult and costly to switch vendors or adopt new solutions.
● Long-term dependency on a single vendor increases risks, especially if the vendor discontinues support or updates.

Open Standards

● Allow freedom to choose devices, platforms, or systems from multiple vendors.
● Foster competition and innovation in the market, enabling better pricing and improved features.

Example:

● A proprietary EV charger protocol locks the business into a specific back-end provider, while OCPP chargers can switch providers easily.

5. Limited Innovation and Ecosystem Growth

Proprietary Integrations

● Constrained by the vendor’s development roadmap and priorities, slowing the adoption of new technologies or features.
● Often incompatible with emerging technologies like AI, IoT, or V2G (Vehicle-to-Grid) unless explicitly supported.

Open Standards

● Encourage collaboration and innovation by allowing multiple stakeholders to contribute to the standard’s evolution.
● Built to integrate with other open standards, ensuring compatibility with cutting-edge technologies.

Example:

● OpenADR supports integration with IoT devices and DER systems, while a proprietary DR solution might not.

6. Poor Documentation and Support

Proprietary Integrations

● Often lack comprehensive, publicly available documentation, making implementation and troubleshooting harder.
● Depend on the vendor for support, which may be slow, expensive, or unavailable for legacy systems.

Open Standards

● Backed by extensive documentation, industry collaboration, and community support.
● Issues can often be resolved by referencing publicly available resources or consulting a broad community of developers.

Example:

● OCPP provides detailed protocol documentation and community-driven troubleshooting resources, while proprietary protocols rely solely on vendor support.

7. Security Risks

Proprietary Integrations

● Custom-built solutions may lack robust security features or auditing processes, exposing vulnerabilities.
● Updates to address security flaws depend on the vendor’s timeline, leaving systems exposed for longer periods.

Open Standards

● Developed with industry-wide collaboration, ensuring robust security practices like TLS encryption, certificate-based authentication, and compliance with regulations.
● Regular updates and community vigilance help quickly address vulnerabilities.

Example:

● ISO 15118 uses PKI for secure EV charging, whereas proprietary EV charging protocols may not have equivalent security measures.

Architecture design of
different standards

codibly.com

Comparison of
Standards

codibly.com

Standard Primary Use Case Architecture
Model

Communication
Protocols

Complexity Scalability Integration
Flexibility

Security Features Developer Considerations

OCPP EV charger management Client-Server WebSocket, HTTP(S) Moderate High Medium (none, Password,mTLS) Requires middleware for non-OCPP chargers. Open-source
SDKs, cloud base accelerators available

OCPI Roaming for EV networks Decentralized REST, JSON Low-Moderate High Medium (token-based) Lightweight API-based integration. Ideal for roaming networks.
OpenADR Demand response

programs
Hub-and-Spoke HTTP, XML, JSON Moderate High High (mTLS, OAuth2) Optimized for demand response. Requires Business Logic for

demand response programs.
OSCP Power load of a network of

charging stations
Client-Server REST, JSON Low-Moderate High High (TLS) Simple to implement. Needs grid operator cooperation.

ISO 15118 Plug-and-charge
functionality

Peer-to-Peer TLS, XML, V2G-TP High Moderate Low (mTLS with PKI) Complex PKI management. Essential for future EV
ecosystems.

IEEE
2030.5

DER and IoT integration Hub-and-Spoke HTTP(S), REST, XML High High Low (mTLS) Low level specification and requirements. Less flexible than
OpenADR. Can be also implemented for DR.

Modbus Legacy and industrial
systems

Master-Slave TCP/IP, Serial Low Moderate Low Basic Simple and robust. Best for constrained or legacy systems.

1. Architecture Model

● OCPP Client-server models, suitable for centralized management of devices (EV chargers).
● ISO 15118: Peer-to-peer model, ideal for direct communication between vehicles and chargers.
● OpenADR and IEEE 2030.5: Hub-and-spoke architectures enable centralized data aggregation and control for distributed systems.

2. Communication Protocols

● Modern Protocols:
○ OCPP, ISO 15118, OpenADR: Use secure, internet-based communication protocols (HTTP, WebSocket, TLS).

● Legacy Protocols:
○ Modbus: Include specialized or legacy protocols like GOOSE, SMV, or serial communications

3. Complexity

● High Complexity:
○ ISO 15118, IEEE 2030.5: Involves intricate processes like Public Key Infrastructure (PKI) and certificate exchange.

● Moderate Complexity:
○ OCPP, OpenADR: Relatively simpler implementations but require understanding of API development and endpoint integration.

4. Scalability

● High Scalability:
○ OCPP: Supports large EV charging networks.
○ OpenADR, IEEE 2030.5: Scalable for managing DERs and demand response across multiple locations.

● Moderate Scalability:
○ ISO 15118: Limited scalability due to the peer-to-peer nature.
○ Modbus: Best suited for small-scale, legacy applications.

5. Integration Flexibility

● High Flexibility:
○ OCPP, OpenADR, IEEE 2030.5: Easily integrated with other systems using REST APIs or middleware.

● Moderate Flexibility:
○ IEEE 2030.5: WLow level specification and requirements. Less flexible than OpenADR. Can be also implemented for DR.

Layers

codibly.com

System Example: Multi-Standard EV
Charging Ecosystem

codibly.com

● Physical Layer: (Hardware Level)

Purpose: Interfaces hardware devices such as EV chargers, smart meters, DERs, or substations with communication systems.

● Communication Layer: (Transport and Connectivity)

Purpose: Ensures reliable and secure data transfer between devices, systems, and cloud platforms.

● Application Layer: (Data and Protocol Handling)

Purpose: Manages device-specific protocols, application-specific logic, and standards implementations.

● Middleware Layer: (Abstraction and Interoperability)

Purpose: Decouples the hardware and software components to simplify integration of multiple standards.

● Cloud/Control Layer: (Management and Orchestration)

Purpose: Ensures data integrity, user authentication, and secure communication.

● Security Layer
○ Purpose: Ensures user authentication, and secure communication.

Approaches to
Implementing

Standards

codibly.com

In-house
vs

Outsourcing
dilemma

codibly.com

codibly.com

In-house vs Outsourcing
dilemma

codibly.com

Aspect In-House Development External Provider (Outsourced)

Cost - High initial investment (salaries, tools, infrastructure) - Predictable cost, pay-per-project or service-based pricing

Expertise - Limited to in-house skills, may require training - Access to specialized expertise and industry best practices

Speed of Delivery - Potential delays due to competing internal priorities - Faster execution due to focused project teams

Scalability - Requires hiring and onboarding for additional capacity - Easily scalable based on project needs

Control & Flexibility - Full control over process and customization - Limited control, dependent on contract terms

Security & Compliance - Easier to ensure adherence to internal standards - Must carefully vet provider for compliance and security

Maintenance - Continuous responsibility on internal teams - Provider may offer ongoing support as part of the contract

Innovation Potential - May be constrained by existing knowledge - Exposure to new technologies and solutions

Implementation
models

codibly.com

codibly.com

1. Build from scratch
2. Open Source
3. Proxy
4. Accelerated

codibly.com

Build from scratch

Develops a fully customized solution
to implement the standard without
relying on open source or ready to
implement solutions. Often used by
organizations with unique
requirements or proprietary systems
where solution can bring comptetitive
advantage and largely base on
company’s know-how.

codibly.com

PROS

● Full Control:
● Tailor the implementation to specific business needs.
● Enables optimization for performance and integration.

● Flexibility:
● Can adapt the implementation to future requirements without dependencies.

● Long-Term Viability:
● No reliance on third-party code, which may become obsolete.

● IPR
● Full IP Rights for the code and solution

CONS

● High Cost:
● Requires significant investment in resources, including skilled developers and testing.

● Long Development Cycles:
● Building from scratch can delay time-to-market compared to other approaches.

● Steep Learning Curve:
● Teams must gain expertise in the standard’s intricacies before implementation.
● Requires in-depth knowledge of the standard and its specifications.

● Maintenance Overhead:
● Responsibility for bug fixes, updates, and compliance remains entirely in-house.

Leverage Open Source
Solutions

Use open-source libraries, tools, or
reference implementations to
implement the standard.
Used by companies for the solutions
that have strong community support
and has access to knowledge.

codibly.com

PROS

● Accelerated Development:
● Leverage pre-existing implementations to reduce coding and testing time.

● Cost Efficiency:
● Typically free to use, reducing licensing costs.

● Community Support:
● Access to a global community for troubleshooting and enhancements.

● Focus on Customization:
● Developers can focus on customizing the implementation instead of building core functionality.

CONS

● Limited Flexibility:
● Restricted by the architecture and features of the open-source solution.

● Dependency Risk:
● Relying on community updates may lead to delays or project risks if the library is abandoned.

● Performance Constraints:
● Open-source solutions may not be optimized for specific business needs, leading to inefficiencies.

● Security and Compliance Risks:
● May require extensive audits to ensure the library adheres to security and regulatory standards.

● Certification process
● Needs to be conducted by internal team with no support

Using Standards as a
Proxy

Utilize middleware or adapters
provided by external suppliers.
The proxy layer acts as an
intermediary, reducing the need to
implement the standard directly.
Usually provided as SaaS.

codibly.com

PROS

● Simplified Integration:
● Avoids the need for direct implementation by bridging existing systems with the standard.

● Fast Deployment:
● Ideal for organizations that need quick compliance without full implementation.

● Cost Efficiency short term:
● Reduces development effort by leveraging system as a service.

CONS

● Performance Trade-Offs:
● Communication may introduce latency or reduce system performance.

● Limited Control:
● Developers usually don't have flexibility to optimize the proxy solution.
● No access to source code.

● Dependency Risk:
● Reliance on third-party services introduces risks if the provider discontinues support.

● Access to Data
● Service provider will have full access to data.

● Cost long-term
● For larger implementations overal cost may be higher than other options.

Accelerated Development

Utilize commercial Accelerator that is
pre-built for implementing standards.
Accelerators typically offer
configurable options, allowing for
quicker implementation with some
customization.

codibly.com

PROS

● Short Time-to-Market:
● Faster than building from scratch and open source but still allows for customization.

● High Reliability:
● Accelerators often come with tested and validated implementations.

● Support Options:
● Implementation may include dedicated technical support.
● No need for long learning curve.
● Supplier usually provides verion updates with new functionalities or security fixes.

● Reduced Risk:
● Fewer bugs and issues as the framework is built by experienced providers.
● Already tested by other companies.
● Often Suppliers allow for contacts with other clients.
● Supplier takes responsibility for the implementation.

● Certification
● Vendors can help with certification process that will speed up and simplify it.

CONS

● May be costlier than open source:
● Licensing or subscription fees increase the overall implementation cost.

● Predefined Stack:
● Technology stack may be different than stack that internal team is using.

● Quality and Security:
● Implementing pre-built code may require audit to ensure it meets quality and security standards.

● Integration Complexity:
● May require effort to align the accelerators with existing systems or above mentioned standards.

With ACCELERATORS CUSTOM BUILD

OCPP 1.6J + 2.0.1 4-8 weeks 4-12 months

OCPI 4-8 weeks 3-4 months

OpenADR 4-8 weeks 3-4 months

Factors to Consider in
decision making process

codibly.com

● Project Timeline:

Tight deadlines favor open source, accelerators, or proxies

● Budget:

Cost-sensitive projects may benefit from open-source or proxy solutions

● Business Continuity:

Critical business solutions will favor solutions that are robust and Company can further support and
develop the solution (no vendor-lock situation)

● Scale and Future Growth:

Large-scale deployments may benefit from accelerators or custom build to ensure scalability

● Complexity and Customization Needs:

Highly customized requirements may necessitate building from scratch or leveraging accelerators

● Expertise and Resources:

Teams with limited expertise in the standard may prefer accelerator-based solutions

Models comparison

codibly.com

Approach Time-to-Market Cost Business Continuity Flexibility Scalability Complexity

Build from Scratch Long High High High High High

Open Source Medium Low-Medium Medium Medium Medium Medium

Accelerators Short Medium High Medium High Low

Proxy Short Low-Medium Low Low High Low

CASE STUDY
QUIZ

codibly.com

CASE STUDY 1

codibly.com

Company 1 - EVSE startup

Recently established with revolutionary idea for EV market. The team consist of hardware and
embedded engineers with limited knowledge of cloud software development and standards. They
need to implement OCPP and OpenADR to participate in NEVI (National Electric Vehicle
Infrastructure) program in Alaska state - US.

1. Limited knowledge and resources
2. Team focused on internal know-how that can assure competitiveness on the market
3. Important time-to-market (very often connected with investors and their expectations)
4. Needs to fulfill compliance with standards but this is not business critical

Solution ?

CASE STUDY 2

codibly.com

Company 2 - Large Enterprise

Car OEM that provides wallboxes to their clients. Want to provide Demand Response programs for
their clients.
The department has KPI to implement OpenADR standard within 6 months.

1. Large development teams
2. Complex architecture
3. Security and quality is critical
4. Compliance with the standards is important for revenue
5. Time-to-market (short to mid term) / depending on particular KPIs

Solution ?

CASE STUDY 3

codibly.com

Company 3 - Scaleup

Charge Point Management System provider needs to implement OCPP server 2.0.1. to secure
contract with large client. They already have Their implementation of OCPP 1.6. Due to fast growth
of the company and large competition on the market the Roadmap is fully packed with additional
features that can help growing the system.

1. Medium size development team
2. Team usually focused on uniqe functionalities
3. Extensive roadmap where priorities are must due to limited resources
4. Compliance with the standards is important for securing contracts with clients
5. Time-to-market (short to mid term)

Solution ?

Which stack
should I use?

Agnostic
approach

codibly.com

Why Standard Integration
Doesn’t Have to Use the
Same Technology Stack as
other systems

codibly.com

A. Standards Are Protocol-Based, Not Stack-Dependent

● Standards like OpenADR, OCPP, and OCPI define communication protocols (e.g., REST, JSON, WebSocket), not implementation technologies.
● These protocols are interoperable across diverse technology stacks, making direct stack alignment unnecessary.

B. Enables Use of the Best Tools for the Job

● Different standards may have libraries, SDKs, or tools optimized for specific stacks.

D. Facilitates Microservices and Decoupled Architectures

● Standards can be implemented as microservices, each in its preferred stack, enabling independent scaling and updates.
● Example: A Node.js-based OCPI microservice can integrate seamlessly with a Java-based billing system.

E. Encourages Innovation and Flexibility

● Teams can experiment with cutting-edge technologies or frameworks for standard implementation without affecting the core stack.
● Example: Implementing ISO 15118 using Go for high performance while retaining the legacy system in .NET.

F. Supports Heterogeneous Environments

● Companies often have diverse systems due to acquisitions, partnerships, or legacy infrastructure.
● Example: An energy company may use .NET for its CRM but JAVA for OpenADR-based DER integration due to pre-existing expertise or tools.

G. Simplifies Outsourcing

● Outsourced development of a standard can occur in a stack optimized for that standard, independent of the internal systems.
● Example: A third-party vendor may implement OCPP in Python while the company maintains its core applications in C#.

Ensuring a Stack-Agnostic
Approach for Implementing
Standards

A stack-agnostic approach enables
companies to integrate standards like
OpenADR, OCPP, or OCPI without
being tied to the same technology
stack as their existing solutions. This
approach promotes flexibility,
scalability, and long-term adaptability.
Here’s how to achieve it and reasons
why standards don’t need to be
implemented in the same stack as
other company solutions.

codibly.com

A. Adopt Modular Architecture

● Separate the implementation of the standard from other system components (e.g., user management, billing, analytics).
● Example: Deploy OpenADR as a standalone microservice that interacts with the rest of the system through REST APIs or event-driven architecture.

B. Utilize Containerization

● Implement the standard in isolated containers (e.g., Docker) that can run independently of the underlying stack.
● Example: A containerized OCPP service can communicate with a .NET backend-CPMS.

C. Leverage Standard Communication Protocols

● Standards often rely on universal communication protocols like HTTP, REST, JSON, or WebSocket, enabling seamless interaction between
heterogeneous stacks.

● Example: OpenADR uses XML and JSON payloads that can be processed by any system, regardless of the technology stack.

D. Adopt Cloud-Native Approaches

● Deploy the standard implementation on cloud platforms using serverless or platform-agnostic services (e.g., AWS Lambda, Azure Functions).
● Example: Use OpenADR in a cloud-based VTN while integrating it with an on-premises DER management system.

E. Focus on Abstraction Layers

● Create abstraction layers that encapsulate standard-specific logic, ensuring that the core business logic is unaffected by the choice of implementation
stack.

● Example: A Java-based abstraction layer for ISO 15118 can interact with Python-based EV charging systems.

Most common
Questions from

our Clients

codibly.com

codibly.com

We need to own IPR.

codibly.com

I have .NET as main technology. How can I
implement your solution that is written in JAVA?

codibly.com

How to assure independency from the service
provider.

codibly.com

Who will maintain the solution after
deployment?

CASE STUDY
EVSE x DEMAND

RESPONSE

codibly.com

Case Study from 2024
Implementation of the OpenADR
standard and integration with one of
the aggregators.

codibly.com

EVSE NORTH AMERICA

Leading EVSE from North America that needs to achieve
two goals that will help business growth.

Goals

 1. Compliance with OpenADR and certification to
meet NEVI program requirements

 2. Integration with Aggregator to participate in DR
programs for additional revenue.

EVSE EUROPE

Leading EVSE from EU. Want to participate in Demand
Response Programs. They calculated that on yearly basis
it can bring them around X Mio EUR of additional
revenue.

Goals

 1. Integration with Aggregator to participate in DR
programs for additional revenue.

EVSE NORTH AMERICA

Chose the OpenADR accelerator ensuring that:

1. there is full knowledge transfer to the internal dev team

2. can be independent from vendor provider

3. can be OpenADR certified within max 2 months.

4. will participate in DR Program starting from new year (participation is based on
quarterly intervals) (3 months from project start)

5. the solution can be integrated with this current tech stacks (PHP, .NET)

EVSE EUROPE

Chose the custom developed solution from scratch based on fixed price model
ensuring that:

1. solution will be delivered on time within exact timeframe

2. will participate in DR Program starting from new year (participation is based on
quarterly intervals)

3. can be independent from vendor provider and their team can take over the
solution at any time needed

4. SLA responsibility will be transferred to external vendor

5. the solution will be developed in particular tech stack (in this example node.js)

SOLUTION

SOLUTION

Case Study from 2024
Comparison of the results

codibly.com

Time-to-Market Cost Scope Knowledge
transfer Scalability Testing IPR

EVSE NA Short Medium
OpenADR cert +

Integration
Full High Short Vendor / Client

EVSE EU Medium Medium-High Integration Full High Medium-Long Client

Łukasz Kulczyński
Executive Vice President | Head of eMobility

+48 538 050 158
lukasz.kulczynski@codibly.com
Linkedin

Questions?

mailto:lukasz.kulczynski@codibly.com
https://www.linkedin.com/in/lukaszkulczynski/

